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ABSTRACT 

Intrusion detection is a critical component of 
secure information systems. This paper addresses the 

issue of identifying important input features in building 

an intrusion detection system (IDS). Since elimination 
of the insignificant and/or useless inputs leads to a 

simplification of the problem, faster and more accurate 

detection may result. Feature ranking and selection, 
therefore, is an important issue in intrusion detection. 

In this paper we apply the technique of deleting 

one feature at a time to perform experiments on SVMs 
and neural networks to rank the importance of input 

features for the DARPA collected intrusion data.  

Important features for each of the 5 classes of intrusion 
patterns in the DARPA data are identified. 

It is shown that SVM-based and neural network 

based IDSs using a reduced number of features can 
deliver enhanced or comparable performance. An IDS 

for class-specific detection based on five SVMs is 
proposed. 

1. Introduction 

The data we used in our experiments originated 

from MIT’s Lincoln Lab. It is developed for intrusion 

detection system evaluations by DARPA and is 

considered a benchmark for intrusion detection 

evaluations [13]. This paper mainly addresses the issue 

of identifying important input features for intrusion 

detection. Since the ability to identify the important 

inputs and redundant inputs of a classifier leads 

directly to reduced size, faster training and possibly 

more accurate results, it is critical to be able to identify 

the important features of network traffic data for 

intrusion detection in order for the IDS to achieve 

maximal performance. 

Since most of the intrusions can be uncovered by 

examining patterns of user activities, many intrusion 

detection systems have been built by utilizing the 

recognized attack and misuse patterns to develop 

learning machines [1,2,3,4,5,6,7,8,9]. In our earlier 

work, support vector machines (SVMs) are found to be 

superior to neural networks in many important respects 

of intrusion detection [10,11,12], so we will illustrate 

feature ranking using SVMs and neural networks. 

We performed experiments to rank the importance 

of input features for each of the five classes (normal, 

probe, denial of service, user to super user, remote to 

local) of the patterns in the DARPA data. It is shown 

that using only the important features for classification 

gives good accuracies and, in certain cases, reduces the 

training time and testing time of the SVM classifier. 

In the rest of the paper, a brief introduction to the 

data we used is given in section 2. In section 3 we 

describe the method of deleting one input feature at a 

time and the performance metrics considered for 

deciding the importance of a particular feature. In 

section 4 describes the experiments using support 

vector machines and neural networks. In section 5 we 

present the experimental results of using support vector 

machines for feature ranking. In section 6 we present 

the experimental results of using neural networks for 

feature ranking. In section 7 we summarize our results 

and give a brief description of our proposed IDS 

architecture. 

2. The data 

In the 1998 DARPA intrusion detection evaluation 

program, an environment was set up to acquire raw 

TCP/IP dump data for a network by simulating a 

typical U.S. Air Force LAN.  The LAN was operated 

like a true environment, but being blasted with multiple 

attacks. For each TCP/IP connection, 41 various 

quantitative and qualitative features were extracted. Of 
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this database a subset of 494021 data were used, of 

which 20% represent normal patterns. 

 

Attack types fall into four main categories: 

1. DOS: denial of service 

2. R2L: unauthorized access from a remote machine 

3. U2R: unauthorized access to local super user 

(root) privileges 

4. Probing: surveillance and other probing 

3. Ranking the significance of inputs  

Feature selection and ranking is an important issue 

in intrusion detection. Of the large number of features 

that can be monitored for intrusion detection purpose, 

which are truly useful, which are less significant, and 

which may be useless? The question is relevant 

because the elimination of useless features (or audit 

trail reduction) enhances the accuracy of detection 

while speeding up the computation, thus improving the 

overall performance of an IDS. In cases where there 

are no useless features, by concentrating on the most 

important ones we may well improve the time 

performance of an IDS without affecting the accuracy 

of detection in statistically significant ways.  

The feature ranking and selection problem for 

intrusion detection is similar in nature to various 

engineering problems that are characterized by 

Having a large number of input variables x = (x1, x2, 

…, xn) of varying degrees of importance; i.e., some 

elements of x are essential, some are less important, 

some of them may not be mutually independent, and 

some may be useless or noise 

Lacking an analytical model or mathematical formula 

that precisely describes the input-output relationship, y 

= F (x) 

Having available a finite set of experimental data, 

based on which a model (e.g. neural networks) can be 

built for simulation and prediction purposes 

Due to the lack of an analytical model, one can 

only seek to determine the relative importance of the 

input variables through empirical methods. A complete 

analysis would require examination of all possibilities, 

e.g., taking two variables at a time to analyze their 

dependence or correlation, then taking three at a time, 

etc. This, however, is both infeasible (requiring 2n 

experiments!) and not infallible (since the available 

data may be of poor quality in sampling the whole 

input space). In the following, therefore, we apply the 

technique of deleting one feature at a time [14] to rank 

the input features and identify the most important ones 

for intrusion detection using SVMs and neural 

networks. 

3.1. Methodology for ranking importance 

We first describe the input ranking methodology: 

One input feature is deleted from the data at a time, the 

resultant data set is then used for the training and 

testing of the classifier. Then the classifier’s 

performance is compared to that of the original 

classifier (based on all features) in terms of relevant 

performance criteria.  Finally, the importance of the 

feature is ranked according to a set of rules based on 

the performance comparison. The procedure is 

summarized as follows:  

1. Delete one input feature from the (training and 

testing) data 

2. Use the resultant data set for training and testing 

the classifier 

3. Analyze the results of the classifier, using the 

performance metrics 

4. Rank the importance of the feature according to 

the rules 

5. Repeat steps 1 to 4 for each of the input features 

3.2. Performance metrics for support vector 

machines 

To rank the importance of the 41 features (of the 

DARPA data) in SVM-based IDS, we consider three 

main performance criteria: overall accuracy of (5-class) 

classification; training time; and testing time. Each 

feature will be ranked as “important”, “secondary”, or 

“insignificant”, according to the following rules that 

are applied to the result of performance comparison of 

the original 41-feature SVM and the 40-feature SVM: 

Rule set: 

If accuracy decreases and training time 

increases and testing time decreases, then the 

feature is important 
If accuracy decreases and training time 

increases and testing time increases, then the 

feature is important 
If accuracy decreases and training time 

decreases and testing time increases, then the 

feature is important 
If accuracy unchanges and training time 

increases and testing time increases, then the 

feature is important 
If accuracy unchanges and training time 

decreases and testing time increases, then the 

feature is secondary 

If accuracy unchanges and training time 

increases and testing time decreases, then the 

feature is secondary 
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If accuracy unchanges and training time 

decreases and testing time decreases, then the 

feature is insignificant 
If accuracy increases and training time 

increases and testing time decreases, then the 

feature is secondary 

If accuracy increases and training time 

decreases and testing time increases, then the 

feature is secondary 

If accuracy increases and training time 

decreases and testing time decreases, then the 

feature is insignificant 

3.3. Performance metrics for neural networks 

To rank the importance of the 41 features (of the 

DARPA data) in neural network based model, we 

consider three main performance criteria: overall 

accuracy (OA) of (5-class) classification; false positive 

rate (FP); and false negative rate (FN). Each feature 

will be ranked as “important”, “secondary”, or 

“insignificant”, according to the following rules that 

are applied to the result of performance comparison of 

the original 41-feature neural network and the 40-

feature neural network: 

Rule set: 

If OA increases and FP decreases and FN 

decreases, then the feature is unimportant 
If OA increases and FP increases and FN 

decreases, then the feature is unimportant 
If OA decreases and FP increases and FN 

increases, then the feature is important 
If OA decreases and FP decreases and FN 

increases, then the feature is important 
If OA un-changes and FP un-changes, then the 

feature is secondary 
Our performance metrics and the rules for 

deciding the importance of the input features are not 

limited to the above-mentioned ones; they can be 

modified depending on the complexity and the nature 

of the problem. 

4. Experiments 

Support vector machines and neural networks are 

used for ranking the importance of the input features, 

taking above mentioned performance metrics and the 

rule set into consideration [15]. Once the importance of 

the input features was ranked, the classifiers were 

trained and tested with only the important features. 

Further, we validate our methodology by comparing 

the performance of the classifier using all input 

features to that using the important and the secondary 

features; and we also compare the performance of a 

classifier using the union of the important features for 

all fives classes. 

 (Because SVMs are only capable of binary 

classifications, we will need to employ five SVMs for 

the five-class identification problem in intrusion 

detection. But since the set of important features may 

differ from class to class, using five SVMs becomes an 

advantage rather than a hindrance, i.e., in building an 

IDS using five SVMs, each SVM can use only the 

important features for that class which it is responsible 

for making classifications.) 

5. Support vector machines 

Support vector machines, or SVMs, are learning 

machines that plot the training vectors in high-

dimensional feature space, labeling each vector by its 

class. SVMs classify data by determining a set of 

support vectors, which are members of the set of 

training inputs that outline a hyper plane in the feature 

space [12]. 

SVMs provide a generic mechanism to fit the 

surface of the hyper plane to the data through the use 

of a kernel function. The user may provide a function 

(e.g., linear, polynomial, or sigmoid) to the SVMs 

during the training process, which selects support 

vectors along the surface of this function. The number 

of free parameters used in the SVMs depends on the 

margin that separates the data points but not on the 

number of input features, thus SVMs do not require a 

reduction in the number of features in order to avoid 

over fitting--an apparent advantage in applications such 

as intrusion detection. Another primary advantage of 

SVMs is the low expected probability of generalization 

errors. 

There are other reasons that we use SVMs for 

intrusion detection.  The first is speed: as real-time 

performance is of primary importance to intrusion 

detection systems, any classifier that can potentially 

run “fast” is worth considering. The second reason is 

scalability: SVMs are relatively insensitive to the 

number of data points and the classification complexity 

does not depend on the dimensionality of the feature 

space [14], so they can potentially learn a larger set of 

patterns and thus be able to scale better than neural 

networks. Once the data is classified into two classes, a 

suitable optimizing algorithm can be used if necessary 

for further feature identification, depending on the 

application [14]. 

5.1 Experiments using support vector 

machines 
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Our results are summarized in the following 

tables. Table 1 gives the performance results of the five 

SVMs for each respective class of data. Table 6 

through Table 10 in the appendix, each containing the 

results of 41 experiments; give the performance 

statistics of the SVM with 40 features. Table 2 shows 

the results of SVMs performing classification, with 

each SVM using as input the important features for all 

five classes. Table 3 shows the results of SVMs 

performing classification, with each SVM using as 

input the union of the important features for all five 

classes. Table 4 shows the result of SVMs performing 

classification, with each SVM using as input the 

important and secondary features for each respective 

class. 

Table1: Performance of SVMs using 41 features 

Class Training 

Time (sec) 

Testing  

Time 

(sec) 

Accuracy 

(%) 

Normal 7.66 1.26 99.55 

Probe 49.13 2.10 99.70 

DOS 22.87 1.92 99.25 

U2Su   3.38 1.05 99.87 

R2L 11.54 1.02 99.78 

 
Table2: Performance of SVMs using important 

features 

Class No of 

Featur

es 

Training 

Time 

(sec) 

Testing  

Time 

(sec) 

Accurac

y (%) 

Normal 25 9.36 1.07 99.59 

Probe 7 37.71 1.87 99.38 

DOS 19 22.79 1.84 99.22 

U2Su 8 2.56 0.85 99.87 

R2L 6 8.76 0.73 99.78 

 
Table3: Performance of SVMs using union of 

important features (30) 

Class Training 

Time (sec) 

Testing  

Time 

(sec) 

Accuracy 

(%) 

Normal 7.67 1.02 99.51 

Probe 44.38 2.07 99.67 

DOS 18.64 1.41 99.22 

U2Su 3.23 0.98 99.87 

R2L 9.81 1.01 99.78 

 

 

Table4: Performance of SVMs using important and 

secondary features 

Class No of 

Features 

Training 

Time 

(sec) 

Testing  

Time 

(sec) 

Accurac

y 

(%) 

Normal 39 8.15 1.22 99.59 

Probe 32 47.56 2.09 99.65 

DOS 32 19.72 2.11 99.25 

U2Su 25 2.72 0.92 99.87 

R2L 37 8.25 1.25 99.80 

 

6. Neural networks 

Artificial neural network consists of a collection of 

processing elements that are highly interconnected and 

transform a set of desired outputs [4,5,11]. The result 

of the transformation is determined by the 

characteristics of the elements and the weights 

associated with the interconnections among them. A 

neural network conducts an analysis of the information 

and provides a probability estimate that it matches with 

the data it has been trained to recognize.  The neural 

network gains the experience initially by training the 

system with both the input and out put of the desired 

problem. The network configuration is refined until 

satisfactory results are obtained. The neural network 

gains experience over a period as it is being trained on 

the data related to the problem. 

6.1. Experiments using neural networks 

Our results are summarized in the following 

tables. Table 11 in the appendix gives the results of 42 

experiments; gives the performance statistics of the 

neural networks with 41 features and 40 features. Table 

5 gives the comparison of neural network using all 41 

features to that of using 34 important features. 

Table5: Neural network results using all 34 

important features 

No of 
features 

Accuracy 
(%) 

False 
positive 

rate 

False 
negative 

rate 

Number 
of 

epochs 

41 87.07 6.66 6.27 412 

34 81.57 18.19 0.25 27 

Using all 41 features the network converged at 412 

epochs, while using 34 important features the network 

converged at 27 epochs reducing the training time and 

false negative rate. 
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7. Summary & conclusions 

Comparing Table 1 with Tables 2, 3, 4, and Table 11 

with Table 5 we observe that 

The most important features for the two classes of 

‘Normal’ and ‘DOS’ heavily overlap 

‘U2Su’ and ‘R2L’, the two smallest classes 

representing the most serious attacks, each has a 

small number of important features and a large 

number of secondary features 

The performances of (a) using the important 

features for each class, Table 2, (b) using the union 

of important features, Table 3, and (c) using the 

union of important and secondary features for each 

class, do not show significant differences, and are 

all similar to that of using all 41 features   

Using the important features for each class gives 

the most remarkable performance: the testing time 

decreases in each class; the accuracy increases 

slightly for one class ‘Normal’, decreases slightly 

for two classes ‘Probe’ and ‘DoS’, and remains the 

same for the two most serious attack classes. 

The performances of using the important features 

do not show significant differences to that of using 

all 41 features.   

Using the important features gives the most remarkable 

performance in terms of training time. 

Our ongoing experiments include making 23-class (22 

specific attacks and normal) feature identification using 

SVMs and neural networks, for designing a cost-

effective and real time intrusion detection tool. 
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10. Appendix 

Table6: Class 1, Normal 

Feature 

deleted 

Training 

Time 

(sec) 

Testing  

Time 

(sec) 

Accuracy

(%) 

None 7.66 1.26 99.55 

1.  10.19 1.11 99.51 

2.  6.56 1.46 99.55 

3.  9.06 1.47 99.48 

4.  9.96 1.08 99.55 

5.  33.11 1.62 99.19 

6.  7.56 1.79 98.75 

7.  7.11 1.43 99.55 

8.  8.33 1.41 99.55 

9.  8.37 1.37 99.55 

10.  8.68 1.35 99.55 

11.  7.49 1.33 99.55 

12.  8.01 1.38 99.55 

13.  7.14 0.81 99.55 

14.  8.00 1.46 99.55 

15.  9.81 1.43 99.55 

16.  8.15 1.04 99.55 

17.  8.12 1.47 99.55 

18.  7.36 1.30 99.55 

19.  8.00 1.12 99.55 

20.  8.15 1.38 99.55 

21.  7.98 1.42 99.55 

22.  8.12 1.43 99.55 

23.  7.65 1.34 99.56 

24.  7.29 1.30 99.55 

25.  8.32 1.35 99.55 

26.  7.71 1.30 99.55 

27.  7.73 1.38 99.55 

28.  7.90 1.47 99.55 

29.  7.81 1.39 99.55 

30.  7.57 1.38 99.55 

31.  7.11 1.30 99.55 

32.  6.17 1.26 99.55 

33.  8.53 1.51 99.48 

34.  7.23 1.48 99.55 

35.  6.96 1.35 99.55 

36.  10.19 1.36 99.55 

37.  6.74 1.33 99.55 

38.  8.17 1.43 99.55 

39.  7.75 1.32 99.55 

40.  7.20 1.45 99.55 

41. 9.38 1.43 99.55 

 

Table7: Class 2, Probe 

Feature 

deleted 

Training

Time 

(sec) 

Testing  

Time 

(sec) 

Accuracy

(%) 

None 49.13 2.10 99.70 

1. 58.93 2.01 99.70 

2. 44.07 1.79 99.70 

3. 51.00 2.19 99.61 

4. 62.42 1.85 99.70 

5. 75.67 1.97 98.14 

6. 51.03 1.17 99.52 

7. 51.62 1.98 99.70 

8. 55.34 1.88 99.72 

9. 53.05 1.99 99.70 

10. 46.29 2.00 99.70 

11. 45.68 1.96 99.70 

12. 53.18 1.95 99.70 

13. 55.27 1.95 99.70 

14. 50.67 1.92 99.70 

15. 49.50 2.07 99.70 

16. 47.61 2.16 99.70 

17. 49.38 1.93 99.70 

18. 50.28 1.91 99.70 

19. 50.33 1.94 99.70 

20. 48.61 1.93 99.70 

21. 50.40 1.89 99.70 

22. 51.50 1.96 99.70 

23. 49.00 2.63 99.46 

24. 42.86 1.97 99.61 

25. 52.40 1.95 99.71 

26. 52.42 1.99 99.71 

27. 62.51 2.05 99.71 

28. 71.80 1.91 99.71 

29. 45.95 1.78 99.70 

30. 46.62 2.00 99.70 

31. 46.35 1.93 99.70 

32. 31.89 1.82 99.67 

33. 50.90 1.83 99.62 

34. 47.64 1.30 99.70 

35. 49.49 1.87 99.70 

36. 47.39 1.97 99.70 

37. 48.19 2.03 99.70 

38. 57.51 1.85 99.71 

39. 52.54 1.94 99.71 

40. 56.45 1.98 99.70 

41. 51.66 1.71 99.70 

 

Table8: Class 3, Denial of Service 

Feature Training Testing  Accuracy
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deleted Time 

(sec) 

Time 

(sec) 

(%) 

None 22.87 1.92 99.25 

1.  21.76 1.87 99.23 

2.  23.60 1.89 99.25 

3.  17.88 2.03 99.10 

4.  20.00 1.79 99.25 

5.  39.57 1.61 97.55 

6.  19.63 0.84 98.07 

7.  23.76 1.87 99.25 

8.  31.23 1.86 99.20 

9.  23.80 1.78 99.25 

10.  27.01 1.82 99.25 

11.  22.03 1.86 99.25 

12.  19.69 1.84 99.25 

13.  21.30 1.93 99.25 

14.  20.18 2.02 99.25 

15.  18.76 1.89 99.25 

16.  21.56 1.78 99.25 

17.  22.98 2.09 99.25 

18.  21.47 1.95 99.25 

19.  20.79 1.97 99.25 

20.  21.49 1.96 99.25 

21.  21.75 1.94 99.25 

22.  24.93 2.01 99.25 

23.  23.94 3.01 98.58 

24.  25.43 2.05 99.20 

25.  21.70 1.80 99.19 

26.  25.93 1.98 99.19 

27.  24.21 1.41 99.20 

28.  26.16 1.80 99.20 

29.  29.99 1.93 99.25 

30.  18.27 1.79 99.20 

31.  19.85 1.79 99.25 

32.  11.70 0.95 98.69 

33.  44.19 1.74 99.19 

34.  28.27 1.88 99.25 

35.  28.94 1.75 99.22 

36.  27.39 1.80 99.22 

37.  22.40 1.86 99.25 

38.  22.45 1.95 99.19 

39.  23.81 1.92 99.20 

40.  50.15 1.84 99.22 

41.  25.36 2.03 99.19 

 

Table9: Class 4, User to Root 

Feature 

deleted 

Training 

Time 

(sec) 

Testing  

Time 

(sec) 

Accuracy

(%) 

None 3.38 1.05 99.87 

1.  2.98 0.96 99.87 

2. 3.35 0.98 99.87 

3. 3.00 1.04 99.87 

4. 3.21 1.04 99.87 

5. 3.11 0.65 99.72 

6. 1.99 0.18 88.81 

7. 3.40 1.07 99.87 

8. 3.43 1.10 99.87 

9. 3.37 0.97 99.87 

10. 3.69 0.97 99.87 

11. 3.47 1.06 99.87 

12. 3.36 0.99 99.87 

13. 3.61 1.01 99.87 

14. 3.12 1.02 99.87 

15. 3.40 1.11 99.87 

16. 3.57 1.14 99.87 

17. 3.39 0.98 99.87 

18. 3.46 1.07 99.87 

19. 3.41 1.05 99.87 

20. 3.35 1.10 99.87 

21. 3.34 1.08 99.87 

22. 3.26 1.07 99.87 

23. 3.39 1.05 99.87 

24. 3.32 1.07 99.87 

25. 3.44 1.09 99.87 

26. 3.38 1.06 99.87 

27. 3.36 1.05 99.87 

28. 3.23 1.00 99.87 

29. 3.36 0.98 99.87 

30. 3.42 0.98 99.87 

31. 3.34 1.00 99.87 

32. 3.95 0.92 99.84 

33. 4.58 0.99 99.85 

34. 3.36 1.02 99.87 

35. 2.98 1.05 99.87 

36. 3.50 1.05 99.87 

37. 3.43 1.00 99.87 

38. 3.79 1.05 99.87 

39. 3.27 1.07 99.87 

40. 3.36 0.99 99.87 

41. 3.36 1.01 99.87 

 

Table10: Class 5, Remote to Local 

Feature 

deleted 

Training

Time 

(sec) 

Testing  

Time 

(sec) 

Accuracy

(%) 

None 11.54 1.02 99.78 

1. 7.54 1.04 99.80 

2. 8.79 1.23 99.78 

3. 9.95 1.11 99.75 

4. 8.56 1.26 99.78 

5. 12.11 1.79 99.06 
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6.  16.52 0.63 98.88 

7.  10.18 1.34 99.78 

8.  9.59 1.31 99.78 

9.  8.41 1.23 99.78 

10.  9.30 1.32 99.78 

11.  10.21 1.23 99.78 

12.  9.48 1.33 99.78 

13.  9.88 1.29 99.78 

14.  8.84 1.22 99.78 

15.  9.25 1.28 99.78 

16.  8.89 1.20 99.78 

17.  9.21 1.24 99.78 

18.  9.60 1.30 99.78 

19.  10.15 1.30 99.78 

20.  10.68 0.99 99.78 

21.  10.99 1.26 99.78 

22.  10.88 1.26 99.78 

23.  8.19 1.26 99.78 

24.  7.67 1.22 99.72 

25.  9.26 1.05 99.78 

26.  10.11 1.30 99.78 

27.  9.09 1.24 99.78 

28.  9.10 1.23 99.78 

29.  11.39 1.11 99.78 

30.  10.64 1.26 99.78 

31.  8.56 1.26 99.78 

32.  11.55 1.05 99.80 

33.  12.35 1.25 99.80 

34.  10.59 1.14 99.78 

35.  9.07 1.18 99.78 

36.  9.22 1.22 99.78 

37.  9.33 1.30 99.78 

38.  8.98 0.95 99.78 

39.  8.52 1.26 99.78 

40.  8.98 1.11 99.78 

41.  10.35 1.26 99.78 

 

Table11: Neural network feature ranking results 
Feature 

deleted 

Accuracy 

(%) 
False 

positive 

rate 

False 

negative 

rate 

Number 

of epochs

All  87.07 6.66 6.27 412

1 91.57 7.36 1.07 400

2 77.92 21.22 0.86 420

3 80.68 16.50 2.82 473

4 90.16 9.13 0.71 312

5 90.16 8.88 0.96 438

6 77.23 22.13 0.64 339

7 76.87 22.06 1.07 419

8 72.98 26.28 0.74 389

9 84.89 14.40 0.71 298

10 54.08 45.11 0.81 385

11 75.81 23.79 0.41 331

12 81.64 17.84 0.52 471

13 69.40 4.82 25.78 406

14 71.39 6.14 22.47 494

15 71.93 3.99 24.08 389

16 77.50 4.89 17.61 351

17 75.60 4.21 20.19 377

18 72.09 3.47 24.44 388

19 85.36 4.45 10.29 421

20 79.09 20.30 0.61 314

21 79.09 20.30 0.61 324

22 89.20 9.94 0.86 591

23 62.38 36.76 0.86 379

24 89.16 10.06 0.78 368

25 78.45 20.61 0.94 420

26 77.58 21.61 0.81 427

27 79.03 20.48 0.49 380

28 75.43 24.12 0.45 358

29 94.82 4.21 0.97 345

30 78.01 20.60 1.39 301

31 89.13 10.20 0.67 393

32 82.71 16.36 0.93 398

33 58.72 40.25 1.03 418

34 75.24 23.88 0.89 511

35 53.08 46.28 0.64 436

36 76.62 22.70 0.68 459

37 72.98 26.49 0.54 349

38 74.06 24.82 1.12 387

39 76.42 23.28 0.30 380

40 73.54 26.02 0.44 335

41 74.50 24.70 0.80 402
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